direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: D4×C22×C10, C20⋊4C24, C25⋊3C10, C10.21C25, C4⋊(C23×C10), (C23×C4)⋊7C10, (C24×C10)⋊2C2, (C2×C10)⋊2C24, C24⋊8(C2×C10), C22⋊(C23×C10), (C23×C20)⋊16C2, (C2×C20)⋊17C23, C2.1(C24×C10), C23⋊3(C22×C10), (C22×C10)⋊8C23, (C22×C20)⋊66C22, (C23×C10)⋊17C22, (C2×C4)⋊4(C22×C10), (C22×C4)⋊19(C2×C10), SmallGroup(320,1629)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×C22×C10
G = < a,b,c,d,e | a2=b2=c10=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1874 in 1362 conjugacy classes, 850 normal (10 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, D4, C23, C23, C10, C10, C10, C22×C4, C2×D4, C24, C24, C24, C20, C2×C10, C2×C10, C23×C4, C22×D4, C25, C2×C20, C5×D4, C22×C10, C22×C10, D4×C23, C22×C20, D4×C10, C23×C10, C23×C10, C23×C10, C23×C20, D4×C2×C10, C24×C10, D4×C22×C10
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C24, C2×C10, C22×D4, C25, C5×D4, C22×C10, D4×C23, D4×C10, C23×C10, D4×C2×C10, C24×C10, D4×C22×C10
(1 82)(2 83)(3 84)(4 85)(5 86)(6 87)(7 88)(8 89)(9 90)(10 81)(11 98)(12 99)(13 100)(14 91)(15 92)(16 93)(17 94)(18 95)(19 96)(20 97)(21 79)(22 80)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 61)(40 62)(41 59)(42 60)(43 51)(44 52)(45 53)(46 54)(47 55)(48 56)(49 57)(50 58)(101 159)(102 160)(103 151)(104 152)(105 153)(106 154)(107 155)(108 156)(109 157)(110 158)(111 143)(112 144)(113 145)(114 146)(115 147)(116 148)(117 149)(118 150)(119 141)(120 142)(121 139)(122 140)(123 131)(124 132)(125 133)(126 134)(127 135)(128 136)(129 137)(130 138)
(1 40)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 150)(12 141)(13 142)(14 143)(15 144)(16 145)(17 146)(18 147)(19 148)(20 149)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 18 27 160)(2 19 28 151)(3 20 29 152)(4 11 30 153)(5 12 21 154)(6 13 22 155)(7 14 23 156)(8 15 24 157)(9 16 25 158)(10 17 26 159)(31 148 48 131)(32 149 49 132)(33 150 50 133)(34 141 41 134)(35 142 42 135)(36 143 43 136)(37 144 44 137)(38 145 45 138)(39 146 46 139)(40 147 47 140)(51 128 68 111)(52 129 69 112)(53 130 70 113)(54 121 61 114)(55 122 62 115)(56 123 63 116)(57 124 64 117)(58 125 65 118)(59 126 66 119)(60 127 67 120)(71 108 88 91)(72 109 89 92)(73 110 90 93)(74 101 81 94)(75 102 82 95)(76 103 83 96)(77 104 84 97)(78 105 85 98)(79 106 86 99)(80 107 87 100)
(1 140)(2 131)(3 132)(4 133)(5 134)(6 135)(7 136)(8 137)(9 138)(10 139)(11 50)(12 41)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 141)(22 142)(23 143)(24 144)(25 145)(26 146)(27 147)(28 148)(29 149)(30 150)(31 151)(32 152)(33 153)(34 154)(35 155)(36 156)(37 157)(38 158)(39 159)(40 160)(51 91)(52 92)(53 93)(54 94)(55 95)(56 96)(57 97)(58 98)(59 99)(60 100)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)
G:=sub<Sym(160)| (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,81)(11,98)(12,99)(13,100)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,79)(22,80)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,61)(40,62)(41,59)(42,60)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57)(50,58)(101,159)(102,160)(103,151)(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,141)(120,142)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138), (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,18,27,160)(2,19,28,151)(3,20,29,152)(4,11,30,153)(5,12,21,154)(6,13,22,155)(7,14,23,156)(8,15,24,157)(9,16,25,158)(10,17,26,159)(31,148,48,131)(32,149,49,132)(33,150,50,133)(34,141,41,134)(35,142,42,135)(36,143,43,136)(37,144,44,137)(38,145,45,138)(39,146,46,139)(40,147,47,140)(51,128,68,111)(52,129,69,112)(53,130,70,113)(54,121,61,114)(55,122,62,115)(56,123,63,116)(57,124,64,117)(58,125,65,118)(59,126,66,119)(60,127,67,120)(71,108,88,91)(72,109,89,92)(73,110,90,93)(74,101,81,94)(75,102,82,95)(76,103,83,96)(77,104,84,97)(78,105,85,98)(79,106,86,99)(80,107,87,100), (1,140)(2,131)(3,132)(4,133)(5,134)(6,135)(7,136)(8,137)(9,138)(10,139)(11,50)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,141)(22,142)(23,143)(24,144)(25,145)(26,146)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(36,156)(37,157)(38,158)(39,159)(40,160)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)>;
G:=Group( (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,81)(11,98)(12,99)(13,100)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,79)(22,80)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,61)(40,62)(41,59)(42,60)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57)(50,58)(101,159)(102,160)(103,151)(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,141)(120,142)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138), (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,18,27,160)(2,19,28,151)(3,20,29,152)(4,11,30,153)(5,12,21,154)(6,13,22,155)(7,14,23,156)(8,15,24,157)(9,16,25,158)(10,17,26,159)(31,148,48,131)(32,149,49,132)(33,150,50,133)(34,141,41,134)(35,142,42,135)(36,143,43,136)(37,144,44,137)(38,145,45,138)(39,146,46,139)(40,147,47,140)(51,128,68,111)(52,129,69,112)(53,130,70,113)(54,121,61,114)(55,122,62,115)(56,123,63,116)(57,124,64,117)(58,125,65,118)(59,126,66,119)(60,127,67,120)(71,108,88,91)(72,109,89,92)(73,110,90,93)(74,101,81,94)(75,102,82,95)(76,103,83,96)(77,104,84,97)(78,105,85,98)(79,106,86,99)(80,107,87,100), (1,140)(2,131)(3,132)(4,133)(5,134)(6,135)(7,136)(8,137)(9,138)(10,139)(11,50)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,141)(22,142)(23,143)(24,144)(25,145)(26,146)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(36,156)(37,157)(38,158)(39,159)(40,160)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130) );
G=PermutationGroup([[(1,82),(2,83),(3,84),(4,85),(5,86),(6,87),(7,88),(8,89),(9,90),(10,81),(11,98),(12,99),(13,100),(14,91),(15,92),(16,93),(17,94),(18,95),(19,96),(20,97),(21,79),(22,80),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,61),(40,62),(41,59),(42,60),(43,51),(44,52),(45,53),(46,54),(47,55),(48,56),(49,57),(50,58),(101,159),(102,160),(103,151),(104,152),(105,153),(106,154),(107,155),(108,156),(109,157),(110,158),(111,143),(112,144),(113,145),(114,146),(115,147),(116,148),(117,149),(118,150),(119,141),(120,142),(121,139),(122,140),(123,131),(124,132),(125,133),(126,134),(127,135),(128,136),(129,137),(130,138)], [(1,40),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,150),(12,141),(13,142),(14,143),(15,144),(16,145),(17,146),(18,147),(19,148),(20,149),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,18,27,160),(2,19,28,151),(3,20,29,152),(4,11,30,153),(5,12,21,154),(6,13,22,155),(7,14,23,156),(8,15,24,157),(9,16,25,158),(10,17,26,159),(31,148,48,131),(32,149,49,132),(33,150,50,133),(34,141,41,134),(35,142,42,135),(36,143,43,136),(37,144,44,137),(38,145,45,138),(39,146,46,139),(40,147,47,140),(51,128,68,111),(52,129,69,112),(53,130,70,113),(54,121,61,114),(55,122,62,115),(56,123,63,116),(57,124,64,117),(58,125,65,118),(59,126,66,119),(60,127,67,120),(71,108,88,91),(72,109,89,92),(73,110,90,93),(74,101,81,94),(75,102,82,95),(76,103,83,96),(77,104,84,97),(78,105,85,98),(79,106,86,99),(80,107,87,100)], [(1,140),(2,131),(3,132),(4,133),(5,134),(6,135),(7,136),(8,137),(9,138),(10,139),(11,50),(12,41),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,141),(22,142),(23,143),(24,144),(25,145),(26,146),(27,147),(28,148),(29,149),(30,150),(31,151),(32,152),(33,153),(34,154),(35,155),(36,156),(37,157),(38,158),(39,159),(40,160),(51,91),(52,92),(53,93),(54,94),(55,95),(56,96),(57,97),(58,98),(59,99),(60,100),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130)]])
200 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 4A | ··· | 4H | 5A | 5B | 5C | 5D | 10A | ··· | 10BH | 10BI | ··· | 10DT | 20A | ··· | 20AF |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
200 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | C5×D4 |
kernel | D4×C22×C10 | C23×C20 | D4×C2×C10 | C24×C10 | D4×C23 | C23×C4 | C22×D4 | C25 | C22×C10 | C23 |
# reps | 1 | 1 | 28 | 2 | 4 | 4 | 112 | 8 | 8 | 32 |
Matrix representation of D4×C22×C10 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 2 |
0 | 0 | 0 | 40 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 39 |
0 | 0 | 0 | 0 | 40 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,31,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,40,0,0,0,2,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,39,40] >;
D4×C22×C10 in GAP, Magma, Sage, TeX
D_4\times C_2^2\times C_{10}
% in TeX
G:=Group("D4xC2^2xC10");
// GroupNames label
G:=SmallGroup(320,1629);
// by ID
G=gap.SmallGroup(320,1629);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-5,-2,2269]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^10=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations